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A previously published solution to the Seto-Frank equations (Mansfield, M. L. Polymer 1988, 29, 1755) 
that predicts an elliptical profile for the growing crystal can be derived using straightforward geometrical 
arguments and the known properties of trivial solutions. This simplified derivation clarifies several 
misconceptions generated by the original derivation. 
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I N T R O D U C T I O N  

It has been generally assumed I for years that polymer 
crystals grow by a secondary nucleation process for which 
the following problem becomes relevant: begin with a 
flat substrate, as in Figure la. New nuclei appear on the 
substrate at a rate i per unit time and per unit substrate 
length. These new nuclei produce a pair of steps on the 
otherwise flat substrate, as in Figure lb. New polymer 
stems are now able to add to the substrate at sites adjacent 
to the nucleus in a 'substrate completion' process, which 
is equivalent to permitting each step to move to the left 
or to the right, as in Figure lc. Furthermore, it is 
assumed that  all steps move with a uniform velocity 
+ g (right-steps) or - g (left-steps). These steps continue to 
move with uniform velocity until a left- and a right-step 
collide and mutually annihilate. A number of questions 
then arise. For  example, is it possible to predict the overall 
growth rate of the crystal? Furthermore, we can always 
assume values of i and g that would permit significant 
concentrations of steps on the face, which would of course 
also imply that the growing face is either rough or curved. 
Then, is it possible to predict the shape and roughness 
of the crystal as it grows? 

Seto and Frank z'3 have introduced a pair of coupled 
differential equations in order to describe this process. 
Let l(x, t )dx and r(x, t )dx represent, respectively, the 
number of left- and right-steps found in an element of 
substrate length dx at position x and at time t. The 
Seto-Frank equations read: 

Or Or 
- - +  - "  2grl (1) 
0t g~x - ~ -  

01 
g ~ = i -  2grl (2) 

Ot cx 

The left-hand side of the equations represent transport 
of density to either the right or the left, respectively. The 
term i on the right-hand side accounts for creation of 
steps due to nucleation, and the term - 2 g r l  on the right 
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accounts for the mutual annihilation of steps. If a length 
element dx contains I dx left steps and r dx right steps, 
and if each step contributes a height b, the height 
differential across the element is b( l -r )dx .  Therefore, 
once the functions r(x, t) and l(x, t) are known, then the 
instantaneous profile y(x, t) may be computed from the 
expression: 

Oy = b(l - r) (3) 
0x 

Finally, the temporal increase in the profile y(x, t) is 
determined by the fluxes of both left and right moving 
steps through the point x. Obviously these fluxes are gl 
and gr, respectively, and we may write: 

OY=bg(l + r) (4) 
0t 

A number of exact and approximate solutions to the 
Seto-Frank equations have appeared 2-8. I published an 
asymptotically exact solution 4'5 several years ago that 
has met with some empirical success 9. Unfortunately, 
certain subtle aspects of that derivation have been poorly 
understood and as a result, it has come under attack. 
Since that time, I have come upon a simpler version of 
the derivation, which should dispel some of the subtleties 
associated with the original version. In this paper I 
present the new version of the derivation, and I also 
answer some of the challenges that have been levelled at 
the solution. 

As emphasized in the original publication 4, this 
solution is only asymptotically exact, which is to say that 
it only predicts a certain limiting form of the shape and 
growth of crystals, but that is hardly any reason to 
disparage it. The situation is a bit like the standard trick 
of replacing the form n(n + 1) with n 2. Obviously, this is 
not exact, but it is hardly correct to refer to it as 
'erroneous'. The entire question hinges on a consideration 
of scale: over a scale of unity, this replacement is egregious; 
while over a scale of n 2, it is quite harmless, and is in 
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Figure 2 Relationship between the two velocities G(O) and dy/dt for 
a flat growth front growing according to the Seto-Frank equations 

fact what one means by the expression 'asymptotically 
exact'. 

PROPERTIES OF TRIVIAL SOLUTIONS TO 
THE SETO-FRANK EQUATIONS 

The most trivial solution to the Seto-Frank equations is 
the solution 1 = r = constant. Then, obviously, we obtain: 

I = r = ( i / 2y )  1/2 ~- LF 1 (5) 

where the symbol Lv represents a quantity with the units 
of length, which we call the Frank length, Lv=(2g/i) 1/2. 
Obviously, LF is the scale of length between steps. 
Furthermore, equations (3) and (4) predict a uniformly 
level growth front @/Ox=O that advances with time 
according to the equation: 

@ = 2g(b/Lv) = GF (6) 
~t 

where we have introduced the Frank velocity, Gv = b(2ig) ~/2. 
According to these equations, we expect a flat growth 
front, i.e. neither curved nor rough, since c~y/Ox=O. 
Obviously however, the functions r(x, t) and l(x, t) are 
coarse-grained averages. Local fluctuations of r and l 
away from their mean value of L{- ~ do, of course, exist, 
and therefore, the growth front is never completely flat. 
These equations really only mean that the growth front 
will appear to be flat when observed with resolutions 
much lower than LF. 
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The next-least trivial solution is obtained by assuming 
that r and 1 are again constant, but not necessarily equal 
to each other. This also constitutes a valid solution, 
provided the two constants are related as follows: 

r l = L F  2 (7) 

Obviously, dy/Ox and ?~y/Ot are again constants, so this 
solution also represents a non-curved, 'flat' growth front, 
moving with constant velocity, but now, since ~y/~x is 
generally non-zero, the growth front is inclined at an 
arbitrary angle. Let 0 represent the direction normal to 
the growth front, i.e. the direction in which the front is 
progressing. (Figure 2). Let G(O) represent the growth 
velocity when the growth front is proceeding in the 
direction 0. Then, 

G(O) = sin(0) ~V = bg(r + l) sin 0 (8) 
c~t 

Since 0 - z / 2  is the angle of inclination of the growth 
front, we have 

O~Y = b ( l -  r) = tan(0-  z/2) = - cot(0) (9) 
Ox 

We can now combine equations (7), (8) and (9) to obtain 
an equation for G(O), eliminating r and I. Perhaps the 
easiest way to proceed is to write (r + / ) 2 _ ( r _ / ) 2  =4rl, 
and use equations (8), (9) and (7), respectively, to provide 
expressions for (r +/ )2 ,  ( r - l ) 2  and rl. The result is: 

G2(0) = G 2 s in  2 0 + g2 COS 2 0 10) 

Equation (10) has the general form: 

r2=b 2 sin / O+a z cos 2 0 11) 

which produces, in polar coordinates, curves such as the 
one shown in Figure 3. 

SHAPE OF A GROWING CRYSTAL AT LONG 
TIMES 

Assume that we begin with an arbitrarily shaped crystal 
at t=0 ,  and ask what shape will be assumed at 
long times, assuming the growth is governed by the 
Seto-Frank equations. Obviously, as time progresses, 
the growth front at any arbitrary angle 0 becomes 
progressively flatter, and eventually, its radial growth 
velocity will be given by equation (10). However, 
equation (10) itself does not predict the shape of the 
crystal. It states that the growth front travelling in the 
direction 0 will be at a distance tG(O) from the origin at 
time t. Each of these growth fronts defines a straight line 

Figure 3 The curve whose equation, in polar coordinates, is 
equation (11). The length of a ray from the origin to the boundary is 
proportional to the propagation velocity of a flat growth front growing 
in the same direction, as in equation (10) 
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Figure 4 The form of the crystal is the curve that is simultaneously 
tangent to all possible growth fronts at time t 
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Figure 5 Pedal-point construction of a curve D from a given 
curve C with respect to the point P 

in the plane, and obviously, the form of the crystal at 
time t will be the curve that is simultaneously tangent to 
all these lines, i.e. the envelope of the set of straight lines, 
as shown in Figure 4. Below it is shown that the envelope 
of these lines is the ellipse described in the original paper 4. 

The construction of an ellipse from curves such as those 
shown in Figure 3 is known, in classical geometry, as a 
pedal-point construction 1°. Given a curve C and a 
point P, we draw tangents to C, the lines t in Figure 5. 
Then for each tangent, we draw the perpendicular that 
passes through the point P. The locus of intersections 
between the tangents and their perpendiculars defines a 
second curve, D. Then D is called the pedal curve of C 
with respect to the point P. Conversely, C is called the 
inverse or the negative pedal of D with respect to P. 
Intuitively, the pedal is the curve traced out by the vertex 
of a carpenter's square when one edge of the square is 
constrained to be tangent to the original curve and when 
the other edge is constrained to lie on the point P. 
Obviously, every curve has a unique pedal and negative- 
pedal (with respect to a particular point). We are left, 
then, with the problem of determining the negative-pedal 
with respect to the origin of the curve whose equation 
in polar coordinates is equation (11), which I assert is 
the ellipse whose equation is: 

The proof of this assertion is probably found somewhere 
in the classical literature on conic sections. For example, 
MacLaurin propounded extensively in the 18th century 

on the theory of pedals 11. However, since I have been 
unable to find the proof, I give it in the Appendix. 

From this, it follows that at long times, the crystal 
form predicted by the Seto-Frank equations is the ellipse 
whose equation is: 

tg,/ \ tGF,/ 

It is important to note, however, that this argument 
breaks down as we move towards 0=0 or +~z. For 
example, if 0 is small, then we can show that r "  (bO)-1 
and l~-bOL~ 2, which means that r>>l and that rb>> 1. To 
maintain such a small value of 0 we must insert many 
more right-steps than left-steps, in fact, we must insert 
many right-steps at each site. Obviously, if so many 
right-steps are piled up at the same site, then they present 
a lateral substrate surface lying at a right angle to the 
original substrate, and upon which an equivalent growth 
process can occur. Therefore, each growth front of the 
growing crystal must be thought of as possessing its own 
elliptical section, with orientation dictated by the 
inclination of the growth front, and shape dictated by 
equation 03) using values of GF and g that appertain to 
that growth front. Then the overall crystal shape is given, 
not by a single ellipse, but by the intersection of several 
ellipses. Figure 6, for example, demonstrates how this 
analysis might be applied to predict the form of a 
polyethylene crystal. Figure 6 shows three ellipses, A, B 
and C. (B and C have large aspect ratios, and are 
therefore only shown in section.) Ellipse A belongs to 
the (200) faces of the polyethylene crystal, and has been 
drawn assuming (g, GF)=(1.333,0.5) in arbitrary units. 
Ellipses B and C belong to the (110) faces, and have been 
drawn assuming (g, GF)=(lO0,1 ) and rotated ±60 ° 
relative to ellipse A. 

The previous publication 4 shows that there is actually 
some rounding of the elliptical sections in the vicinity of 
the points of intersection P. However, this rounding 
extends only over distances comparable to LF, and 
therefore becomes unimportant when t is large. 

FURTHER DISCUSSION 

Relationship to the velocity h 
The original derivation began by solving the 

Seto-Frank equations in the interval ( -h t ,  ht), where h 
is the component of the velocity of the points P parallel 
to the x-axis (Figure 6), and took h as an independent 
variable, it being assumed that the value of h is dictated 
by growth on the adjoining face 4. In the present case, 
the value of h is determined after the fact, by constructing 
intersecting ellipses as in Figure 6. Since the form of the 
ellipse proves to be independent of h, the present 
derivation could have been anticipated from the former: 

B A C 

Figure 6 The overall crystal form is expected to be the intersection 
of several ellipses, one belonging to each crystal face 
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the absence of a parameter from a given formula generally 
indicates that the formula can be derived without recourse 
to the parameter. 

Vanishing transport terms in the Seto-Frank equations 
The trivial, constant-r, constant-I solutions to the 

Seto-Frank equations discussed above share a property 
with the solution as given here or in reference 4, which 
is that the transport terms [the left-hand sides of 
equations (1) and (2)] are effectively zero. This fact 
has led to a few misconceptions about the general 
solution 5'~'8. Confusion results from the mistaken belief 
that if these transport terms are zero for any given 
solution, then that solution must not correctly treat the 
transport of steps, and must therefore be erroneous. 
However, as the trivial solutions indicate, the transport 
terms also vanish if the r(x) and l(x) profiles are uniform. 
These solutions still exhibit transport of steps, since, as 
equation (4) indicates, it is only by the flux of steps past 
a point x that the profile grows. 

For  the solution given here, these transport terms only 
vanish asymptotically, in proportion to 1/t, since it is 
only at long times that the ellipse becomes much larger 
than L F and that the r(x) and l(x) profiles become 
featureless over length scales comparable to L F. 

Limitations to the validity of the Seto-Frank equations 
The Seto Frank equations predict significant curvature 

whenever GF ~ g, since then the ellipse has an aspect ratio 
near 1. Straight edges are expected when g>>G F. But 
G v ~ g implies L F ~ b [cf. equation (6)]. As is well-known, 
LF>>b is a condition for the validity of the Seto-Frank 
equations z'3. Therefore, the elliptical profiles of high 
curvature are suspicious, not because they are invalid 
solutions of the Seto--Frank equations, but because the 
Seto-Frank equations themselves are beginning to lose 
validity. We are currently examining lattice growth 
models to better understand the limits of validity of these 
equations, and will be preparing a report of that work 
shortly. 
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APPENDIX 

Here we show that the ellipse, equation (12), is the 
negative-pedal with respect to the origin of the curve 
whose equation in polar coordinates is equation (11). 
Given an ellipse, we construct the tangent at an arbitrary 
point (x, y) on the ellipse, as in Figure A 1. Then from the 

(O,y,,) 

,0) 

Figure AI Schematic diagram showing that when a tangent is drawn 
through an arbitrary point (x,y) on the ellipse of equation 02), the 
distance of the tangent from the origin, r, is given by equation (I 1) 

tangent we drop a perpendicular to the origin. Assume 
that the perpendicular has length r and is inclined at the 
angle 0. Then it is necessary to show that r and 0 obey 
equation (11). Obviously, the tangent has x and y 
intercepts Xo = aZ/x and Yo = bZ/Y, respectively. Twice the 
area of the triangle whose edges are the tangent and the 
two coordinate axes can be written in two equivalent 
ways: 

XoYo = r(x 2 + y2)1/2 

The above expression rearranges to: 

a4b 4 
r 2 ~_. 

a4y 2 + b4x 2 

We now multiply this by l=(x/a) 2+(y/b) 2, and then 
divide numerator and denominator by x2y 2 and obtain: 

2 2 r z _ a  y o + b 2 x  2 

x~ + y~ 

or  

r 2 = a 2 COS 2 0 -['- b 2 sin 2 0 

since x 2 and yo 2 are, respectively, proportional to sinE0 
and cos 2 0. 

Note added in proof 

Professor A. Toda has independently obtained similar 
results. His report is scheduled to appear in Faraday 
Discussions of the Chemical Society, 1993. 
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